
SwarmFormer: Local-Global Hierarchical
Attention via Swarmed Token Representations ∗

Jordan Legg, Mikus Sturmanis, Takara.ai

research@takara.ai

January 24, 2025

Abstract

Standard Transformers rely on O(N2) attention, which becomes pro-
hibitive for large N . Although local or sparse approximations reduce
complexity, they may limit global context. We propose SwarmFormer,
a hierarchical local-global approach that draws inspiration from swarm in-
telligence. Each layer combines repeated local (swarm-like) token neighbor
updates with cluster-based global attention among a smaller set of repre-
sentatives. The local aggregator enables decentralized multi-hop propaga-
tion, while the cluster-level attention captures global context without full
O(N2) overhead. Experimental results on text classification tasks show
that SwarmFormer achieves strong accuracy with up to 90% fewer pa-
rameters than baseline Transformers, demonstrating efficient scalability
to longer sequences.

∗Revision 1.0 - January 2025

1

1 Motivation & Background
Attention Bottleneck. Standard Transformers rely on O(N2) attention,
which is expensive for large sequence lengths N [1].

Sparse / Local Approaches. Convolutions or local windows reduce com-
plexity but can limit global context [2, 3, 4].

Swarm Intelligence Inspiration. Iterative local updates—akin to multi-
agent systems—can propagate information across tokens in a decentralized man-
ner [12, 13]. This approach draws inspiration from collective intelligence in bio-
logical systems [14], where local interactions lead to emergent global behavior.

Clustered Global Context. Group tokens into clusters, produce “represen-
tatives,” and allow these representatives to exchange information in a smaller-
scale global aggregator [5].
SwarmFormer merges these ideas:

• Local neighbor-based updates that avoid O(N2) computations.

• Multi-hop cluster-based global interactions, letting cluster “representa-
tives” exchange information in O(C2) space (with C ≪ N).

2

2 High-Level Architecture Overview

t1 t2 t3 t4 t5 t6 t7 t8

Cluster 1 Cluster 2

r1 r2

Global Attention Layer

ti Token ri Representative Local MLP
Global Attention
Inter-cluster Exchange

Figure 1: Illustration of a single SwarmFormer Aggregation Layer, showing local
neighbor updates, clustering, global attention among cluster reps.

A single SwarmFormer Layer processes a batch of token embeddings X ∈
R(batch)×N×d in four sub-steps:

1. Local Swarm Update. Each token interacts with a small neighborhood
(e.g., ±1 neighbors or learned sets) [15, 16, 17]. A local aggregator (MLP
or mini-attention) updates each token embedding.

2. Cluster Formation. Tokens are partitioned into C clusters (e.g., each
cluster is a contiguous chunk of size S = N

C) [10]. A single “representative”
per cluster is computed (e.g., via mean pooling or a small aggregator) [11].

3. Global Cluster Attention. A smaller-scale attention operates on these
C cluster representatives in O(C2) time, far less than O(N2) when C ≪ N .

4. Broadcast. The updated cluster representatives are broadcast back to
tokens, merging local and global signals.

Stacking multiple SwarmFormer layers (or iterating sub-steps) gradually
propagates local and global information throughout the sequence—yet avoids
the memory/compute blow-up of all-pairs attention.

3

256 12
8

Token
Embedding

256 256 256 12
8

Local Swarm

32 12
8

Clustering

32 12
8

Global Attention

256 12
8

Broadcast

256 256 256 12
8

Local Swarm

32 12
8

Clustering

32 12
8

Global Attention

256 12
8

Broadcast

2 12
8

Classifier

Figure 2: SwarmFormer architecture overview using a two-layer “SwarmFormer-
Small” configuration. Each layer has local swarm updates, cluster formation,
global cluster attention, and broadcasting.

3 Notation
• N : Number of tokens

• d: Embedding dimension

• hi ∈ Rd: Embedding/state of the i-th token

• X ∈ RN×d: Matrix of all token embeddings

• N (i): Neighbor set for token i

• C: Number of clusters

• S: Cluster size, S = N
C

• c(i): Cluster index of token i

• Tlocal: Number of local “swarm” micro-steps in each layer

4

4 Detailed Steps & Equations
4.1 Local (“Swarm”) Aggregation
Goal: Each token only interacts with a small set of neighbors. Complexity
drops from O(N2) to O(N · k) where k = |N (i)|.

A simple per-token local update:

x̂
(ℓ)
i =

x
(ℓ)
i−1 + x

(ℓ)
i + x

(ℓ)
i+1

3 (if using immediate neighbors),

followed by an MLP to get y
(ℓ)
i . Then a gated update:

g
(ℓ)
i = σ

(
Wg[x(ℓ)

i ; y
(ℓ)
i]

)
, x

(ℓ+1)
i = x

(ℓ)
i + g

(ℓ)
i

(
y

(ℓ)
i − x

(ℓ)
i

)
.

We often repeat this local aggregation Tlocal times before proceeding.

4.2 Forming Cluster Representatives
After local swarm steps, we partition tokens into C clusters. For cluster c:

Cluster c := { x
(ℓ+1)
i | c(i) = c}.

A representative embedding r
(ℓ)
c is formed by mean pooling (or a small aggre-

gator):
r(ℓ)

c = 1
S

∑
i∈Cluster c

x
(ℓ+1)
i .

Collect them into R(ℓ) ∈ RC×d.

4.3 Global Cluster Attention
We then let cluster representatives exchange information in a smaller O(C2)
attention:

Q = WQR(ℓ), K = WKR(ℓ), V = WV R(ℓ),

A = softmax
(

QK⊤
√

dk

)
, R(ℓ+1) = A V.

When C ≪ N , O(C2) is far cheaper than O(N2).

4.4 Broadcast Back to Tokens
Finally, each token receives the updated rep from its cluster:

z
(ℓ+1)
i = Wz r

(ℓ+1)
c(i) , x

(ℓ+2)
i = x

(ℓ+1)
i + g

(ℓ+1)
i

(
z

(ℓ+1)
i − x

(ℓ+1)
i

)
.

Again, g
(ℓ+1)
i is a learned gate.

5

5 Full Layer Transition
A single SwarmFormer Layer:

1. (Local) Swarm Aggregation: repeat Tlocal times

x(t+1) = LocalSwarmAggregator(x(t)).

2. Form Cluster Representatives:

rc = 1
|c|

∑
i∈c

x
(Tlocal)
i .

3. Global Cluster Attention:

R(ℓ+1) = Attn({r1, . . . , rC}).

4. Broadcast to Tokens:

xout = BroadcastUpdater(x(Tlocal), R(ℓ+1)).

This yields the updated token embeddings for the next layer.

6 Putting It All Together (Math + Rationale)
We combine:

• Swarm-Style Local Updates. Repeated local neighborhood aggrega-
tion.

• Multi-hop Local–Global. Clusters gather token info, perform smaller
all-pairs among cluster reps, then broadcast results.

Formally:

(A) Local swarm updates (over Tlocal steps):

x
(t+1)
i = x

(t)
i + γ

(t)
i ·

(
Alocal

(
{x

(t)
j : j ∈ N (i)}

)
− x

(t)
i

)
,

[6pt](B) Cluster Reps: rc = 1
S

∑
i∈c

x
(Tlocal)
i ,

[6pt](C) Global Attention on rc : rnew
c = Aglobal({r1, . . . , rC}),

[6pt](D) Broadcast: x
(ℓ+1)
i = x

(Tlocal)
i + Gate

(
x

(Tlocal)
i , rnew

c(i)
)
.

After multiple layers, local information is repeatedly integrated, cluster-level
context is shared, and results are broadcast back—achieving global mixing with-
out O(N2) cost.

6

7 Complexity & Tradeoffs
• Local Swarm: O(N · k)

• Cluster Formation: O(N)

• Global Attention: O(C2), with C = N/S

• Broadcast: O(N)

When C ≪ N , O(C2) is much cheaper than O(N2). But design of neigh-
bor sets and clustering must ensure sufficient global coverage. Clustering can
cause information compression. Specialized hardware optimizations can further
amplify speed gains.

8 Conclusion
SwarmFormer offers:

• Decentralized, swarm-like local updates

• Cluster-based global attention

• A hierarchical local-global mixing mechanism

This approach scales to longer sequences without quadratic blow-up, while re-
taining strong performance. It opens new directions for sparser, hierarchical
attention architectures in Transformers.

9 Experimental Validation
9.1 Implementation Details
Our SwarmFormer implementation uses PyTorch with the following specs:

Hyperparameter Optimization. An Optuna search over 50 trials explored:

• Embedding dim: [64, 96, 128, 160, 192]

• Layers: [2, 3, 4]

• Tlocal: [2, 3, 4, 5]

• Cluster size: [2, 4, 8, 12, 16]

• Sequence length: [64, 128, 256, 384, 512, 768]

• Batch size: [32, 48, 64, 96, 128, 160]

• Learning rates: [5e-5, 5e-4]

7

• Weight decay: [0.02, 0.15]

• Dropout: [0.2, 0.5]

Best configuration (89.03% accuracy) found:

Embedding dim: 192, Layers: 2, Tlocal = 3,

Cluster size: 4, Sequence length: 768,

Batch size: 48, Learning rate: 4.74 × 10−4,

Weight decay: 0.0381, Dropout: 0.40.

Model Configurations. Two variants:

Parameter SwarmFormer-Small SwarmFormer-Base
Embedding dimension 128 192
Number of layers 2 2
Local update steps (Tlocal) 3 3
Cluster size 8 tokens 4 tokens
Sequence length 256 tokens 768 tokens
Batch size 96 48
Dropout rate 0.30 0.40
Learning rate 4.76 × 10−4 4.74 × 10−4

Weight decay 0.0541 0.0381
Total parameters 4,302,850 6,749,186

Table 1: Key hyperparameters for SwarmFormer-Small vs. SwarmFormer-Base.

Training Setup.

• Dataset: IMDB Movie Review (50k samples)

• Hardware: NVIDIA RTX 2080 Ti GPU

• Duration:

– Small: 3.6 minutes
– Base: 12.6 minutes

• Optimizer: AdamW

• Mixed Precision Training + Gradient Clipping (norm=1.0)

8

9.2 Data Augmentation Strategies
A multi-strategy augmentation pipeline [21, 22, 23, 24]:

• Sentence-Level Shuffling (maintaining local context)

• Controlled Synonym Replacement (WordNet-based)

• Hierarchical Sample Creation (combining 2-3 reviews)

• Semantic Preservation ensures no polarity drift

This yielded a 3–5% accuracy boost, crucial for robust generalization and
for SwarmFormer’s hierarchical architecture.

9.3 Results and Analysis
9.3.1 Testing Methodology

• Test split: 25k samples, full FP32 inference

• Batch size=256, pinned memory, GPU synchronization

• Metrics: Accuracy, Precision, Recall, F1

• Latency, throughput, memory usage measured via CUDA events

SwarmFormer-Small

• Accuracy: 86.20%

• Precision: 83.46%, Recall: 90.31%, F1=86.75%

• Inference time: 0.36s (25k samples)

• Mean batch latency: 3.67ms, throughput: 45k samples/s

• Peak memory usage: 8GB

SwarmFormer-Base

• Accuracy: 89.03%

• Precision: 87.22%, Recall: 91.46%, F1=89.29%

• Inference time: 0.47s (25k samples)

• Mean batch latency: 4.83ms, throughput: 34.8k samples/s

• Peak memory usage: 9.13GB

9

10³ 10 10 10 10
Sequence Length (tokens)

10 ³

10 ²

10 ¹

10

10¹

10²

10³

10

M
em

or
y

Us
ag

e
(G

B)

O(N²)
O(C²), C=N/k
k {8,4,2}
O(1)
O(N)

Standard
SwarmC8
SwarmC4
SwarmC2

Linear
Sparse
Sliding

Figure 3: Memory scaling comparison for SwarmFormer (cluster sizes 2, 4, 8),
standard Transformer, linear attention, and sparse attention. SwarmFormer
significantly reduces memory usage vs. full O(N2) while maintaining strong
representational capacity.

Memory Efficiency. At N = 100,000 tokens:

• Standard Transformer: 37.37GB

• SwarmFormer (C=8): 0.74GB

• SwarmFormer (C=4): 2.50GB

• SwarmFormer (C=2): 9.50GB

• Linear Attention: 0.14GB

• Sparse Attention: 0.31GB

SwarmFormer can achieve huge memory savings over full attention, though it is
outperformed by linear/sparse variants if minimal memory is the only goal.
However, SwarmFormer maintains superior representational power in many
tasks.

10

9.4 Comparative Analysis

Model Params Accuracy Precision Recall
SwarmFormer-Base (Ours) 6.7M 89.0% 0.872 0.915
SwarmFormer-Small (Ours) 4.3M 86.2% 0.835 0.903
BERT-base-cased [6] 108M 84.7% 0.827 0.869
RoBERTa-base [7] 125M 87.5% 0.962 0.775
DistilBERT [8] 67M 84.2% 0.915 0.746
ALBERT-base-v2 [9] 12M 86.9% 0.936 0.785

Table 2: Comparison on IMDB test set. SwarmFormer outperforms bigger
models with far fewer parameters.

Observations:

• SwarmFormer-Base (6.7M params) surpasses RoBERTa-base (125M params)
in accuracy.

• ∼90% fewer parameters vs. standard BERT-based methods.

9.5 Ablation Studies
Local Update Steps (Tlocal). Setting Tlocal = 3 or 4 yields best tradeoff.
Going below 2 or above 5 harms performance vs. cost.

Cluster Size. C = 4 or 8 typically optimum. Smaller clusters (C = 2) can
preserve more detail but cost more, while bigger clusters degrade fine-grained
token distinctions.

Augmentation Pipeline. Gains of 3–5% from advanced data augmentation
techniques.

9.6 Technical Insights
Dropout Strategy. Heavy dropout (0.4) on embeddings and moderate dropout
(0.3) on attention layers provided crucial regularization [18, 19, 20].

Gradient Control. Gradient clipping at norm=1.0 prevented exploding gra-
dients and improved stability.

Architecture Balance. Two layers, with local ↔ global interplay, was enough
for strong performance. Gating mechanisms effectively merged broadcast sig-
nals.

11

10 Future Directions
• Dynamic Clustering: Learn cluster assignments on the fly for semantic

grouping [10, 11].

• Cross-Modal Applications: Adapting SwarmFormer to vision (patch-
based), speech, or multi-modal tasks.

• Ultra-Long Context: Scale to million-token contexts with hierarchical
compression.

• Hardware Optimizations: Mixed precision, quantization, or custom
kernels for local-swarm steps.

References
[1] Vaswani, A., et al. (2017). Attention is all you need. In NeurIPS 30.

[2] Child, R., Gray, S., Radford, A., & Sutskever, I. (2019). Generating long
sequences with sparse transformers. arXiv:1904.10509.

[3] Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The long-
document transformer. arXiv:2004.05150.

[4] Zaheer, M., et al. (2020). Big Bird: Transformers for longer sequences.
NeurIPS 33.

[5] Liu, Y., & Lapata, M. (2019). Hierarchical transformers for multi-document
summarization. arXiv:1905.13164.

[6] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-
training of deep bidirectional transformers for language understanding.
NAACL 2019.

[7] Liu, Y., et al. (2019). RoBERTa: A robustly optimized bert pretraining
approach. arXiv:1907.11692.

[8] Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). Distil-
BERT, a distilled version of BERT: smaller, faster, cheaper and lighter.
arXiv:1910.01108.

[9] Lan, Z., et al. (2019). ALBERT: A lite BERT for self-supervised learning
of language representations. arXiv:1909.11942.

[10] Zhang, Y., et al. (2024). TCFormer: Token Clustering Transformer for
Semantic Segmentation. arXiv:2407.11321.

[11] Wang, X., et al. (2024). Hierarchical Document Transformer with Auxiliary
Semantic Signals. arXiv:2407.08330.

12

[12] Guo, Y., Zhang, L., & Liu, Y. (2024). Collective intelligence as a unifying
concept. Communications Biology 7.

[13] Chen, H., Wang, R., & Li, J. (2024). ACO-RNN: Combining Ant Colony
Optimization with Recurrent Neural Networks. HAL Open Science.

[14] Couzin-Fuchs, E., et al. (2024). Collective behavior enhances environmental
learning in animal groups. Nature Communications 15(1).

[15] Tadmor, E., et al. (2024). Emergent Behavior in Collective Dynamics:
From Individual Interactions to Group-Level Phenomena. PRSB 289(1974).

[16] Berman, S., et al. (2024). Scale-free emergent properties in collective sys-
tems near critical points. Sci. Reports 14(1).

[17] Chan, N., & Gershenson, C. (2024). Neural Cellular Automata. ISAL Pro-
ceedings 36, 96–104.

[18] Zhang, K., & Liu, Y. (2024). Dynamic Dropout: Adaptive Regularization
for Transformer Training. arXiv:2411.03236.

[19] Chen, H., et al. (2024). Layer-wise Regularized Dropout for Transformer-
based Language Models. LREC 2024.

[20] Wang, R., & Li, J. (2024). Sparse Mixture of Experts as an Alternative to
Dropout. OpenReview.

[21] Li, X., et al. (2024). Hierarchical Contextual Augmentation for Multi-
Document QA. arXiv:2402.01767.

[22] Zhang, Y., & Wang, J. (2024). Multi-Grained Contrastive Learning for
Short Text Classification. arXiv:2501.09214.

[23] Chen, H., et al. (2024). Label Augmentation for Zero-Shot Hierarchical Text
Classification. ACL 2024.

[24] Wei, J., & Zou, K. (2019). EDA: Easy Data Augmentation Techniques for
Boosting Performance on Text Classification Tasks. EMNLP-IJCNLP.

13

	Motivation & Background
	High-Level Architecture Overview
	Notation
	Detailed Steps & Equations
	Local (“Swarm”) Aggregation
	Forming Cluster Representatives
	Global Cluster Attention
	Broadcast Back to Tokens

	Full Layer Transition
	Putting It All Together (Math + Rationale)
	Complexity & Tradeoffs
	Conclusion
	Experimental Validation
	Implementation Details
	Data Augmentation Strategies
	Results and Analysis
	Testing Methodology

	Comparative Analysis
	Ablation Studies
	Technical Insights

	Future Directions

