

SwarmFormer: Local-Global Hierarchical Attention via Swarmed Token Representations *

Jordan Legg, Mikus Sturmanis, Takara.ai

research@takara.ai

January 24, 2025

Abstract

Standard Transformers rely on $O(N^2)$ attention, which becomes prohibitive for large N. Although local or sparse approximations reduce complexity, they may limit global context. We propose **SwarmFormer**, a hierarchical local-global approach that draws inspiration from swarm intelligence. Each layer combines repeated local (swarm-like) token neighbor updates with cluster-based global attention among a smaller set of representatives. The local aggregator enables decentralized multi-hop propagation, while the cluster-level attention captures global context without full $O(N^2)$ overhead. Experimental results on text classification tasks show that SwarmFormer achieves strong accuracy with up to 90% fewer parameters than baseline Transformers, demonstrating efficient scalability to longer sequences.

^{*}Revision 1.0 - January 2025

1 Motivation & Background

Attention Bottleneck. Standard Transformers rely on $O(N^2)$ attention, which is expensive for large sequence lengths N [1].

Sparse / Local Approaches. Convolutions or local windows reduce complexity but can limit global context [2, 3, 4].

Swarm Intelligence Inspiration. Iterative local updates—akin to multiagent systems—can propagate information across tokens in a decentralized manner [12, 13]. This approach draws inspiration from collective intelligence in biological systems [14], where local interactions lead to emergent global behavior.

Clustered Global Context. Group tokens into clusters, produce "representatives," and allow these representatives to exchange information in a smaller-scale global aggregator [5].

SwarmFormer merges these ideas:

- Local neighbor-based updates that avoid $O(N^2)$ computations.
- Multi-hop cluster-based global interactions, letting cluster "representatives" exchange information in $O(C^2)$ space (with $C \ll N$).

2 High-Level Architecture Overview

Figure 1: Illustration of a single SwarmFormer Aggregation Layer, showing local neighbor updates, clustering, global attention among cluster reps.

A single SwarmFormer Layer processes a batch of token embeddings $X \in \mathbb{R}^{(\text{batch}) \times N \times d}$ in four sub-steps:

- 1. Local Swarm Update. Each token interacts with a small neighborhood (e.g., ± 1 neighbors or learned sets) [15, 16, 17]. A local aggregator (MLP or mini-attention) updates each token embedding.
- 2. Cluster Formation. Tokens are partitioned into C clusters (e.g., each cluster is a contiguous chunk of size $S = \frac{N}{C}$) [10]. A single "representative" per cluster is computed (e.g., via mean pooling or a small aggregator) [11].
- 3. Global Cluster Attention. A smaller-scale attention operates on these C cluster representatives in $O(C^2)$ time, far less than $O(N^2)$ when $C \ll N$.
- 4. **Broadcast.** The updated cluster representatives are broadcast back to tokens, merging local and global signals.

Stacking multiple SwarmFormer layers (or iterating sub-steps) gradually propagates local and global information throughout the sequence—yet avoids the memory/compute blow-up of all-pairs attention.

Figure 2: SwarmFormer architecture overview using a two-layer "SwarmFormer-Small" configuration. Each layer has local swarm updates, cluster formation, global cluster attention, and broadcasting.

3 Notation

- N: Number of tokens
- d: Embedding dimension
- $h_i \in \mathbb{R}^d$: Embedding/state of the *i*-th token
- $X \in \mathbb{R}^{N \times d}$: Matrix of all token embeddings
- $\mathcal{N}(i)$: Neighbor set for token i
- C: Number of clusters
- S: Cluster size, $S = \frac{N}{C}$
- c(i): Cluster index of token i
- T_{local} : Number of local "swarm" micro-steps in each layer

4 Detailed Steps & Equations

4.1 Local ("Swarm") Aggregation

Goal: Each token only interacts with a small set of neighbors. Complexity drops from $O(N^2)$ to $O(N \cdot k)$ where $k = |\mathcal{N}(i)|$.

A simple per-token local update:

$$\hat{x}_i^{(\ell)} = \frac{x_{i-1}^{(\ell)} + x_i^{(\ell)} + x_{i+1}^{(\ell)}}{3} \quad (\text{if using immediate neighbors}),$$

followed by an MLP to get $y_i^{(\ell)}$. Then a gated update:

$$g_i^{(\ell)} = \sigma \big(W_g[x_i^{(\ell)}; y_i^{(\ell)}] \big), \quad x_i^{(\ell+1)} = x_i^{(\ell)} + g_i^{(\ell)} \left(y_i^{(\ell)} - x_i^{(\ell)} \right).$$

We often repeat this local aggregation T_{local} times before proceeding.

4.2 Forming Cluster Representatives

After local swarm steps, we partition tokens into C clusters. For cluster c:

Cluster
$$c := \{ x_i^{(\ell+1)} \mid c(i) = c \}.$$

A representative embedding $r_c^{(\ell)}$ is formed by mean pooling (or a small aggregator):

$$r_c^{(\ell)} = \frac{1}{S} \sum_{i \in \text{Cluster } c} x_i^{(\ell+1)}$$

Collect them into $R^{(\ell)} \in \mathbb{R}^{C \times d}$.

4.3 Global Cluster Attention

We then let cluster representatives exchange information in a smaller ${\cal O}(C^2)$ attention:

$$Q = W_Q R^{(\ell)}, \quad K = W_K R^{(\ell)}, \quad V = W_V R^{(\ell)},$$
$$A = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d_k}}\right), \quad R^{(\ell+1)} = A V.$$

When $C \ll N$, $O(C^2)$ is far cheaper than $O(N^2)$.

4.4 Broadcast Back to Tokens

Finally, each token receives the updated rep from its cluster:

$$z_i^{(\ell+1)} = W_z r_{c(i)}^{(\ell+1)}, \quad x_i^{(\ell+2)} = x_i^{(\ell+1)} + g_i^{(\ell+1)} \left(z_i^{(\ell+1)} - x_i^{(\ell+1)} \right).$$

Again, $g_i^{(\ell+1)}$ is a learned gate.

5 Full Layer Transition

A single SwarmFormer Layer:

1. (Local) Swarm Aggregation: repeat T_{local} times

 $x^{(t+1)} = \text{LocalSwarmAggregator}(x^{(t)}).$

2. Form Cluster Representatives:

$$r_c = \frac{1}{|c|} \sum_{i \in c} x_i^{(T_{\text{local}})}.$$

3. Global Cluster Attention:

$$R^{(\ell+1)} = \operatorname{Attn}(\{r_1, \dots, r_C\}).$$

4. Broadcast to Tokens:

$$x_{\text{out}} = \text{BroadcastUpdater}(x^{(T_{\text{local}})}, R^{(\ell+1)}).$$

This yields the updated token embeddings for the next layer.

6 Putting It All Together (Math + Rationale)

We combine:

- Swarm-Style Local Updates. Repeated local neighborhood aggregation.
- **Multi-hop Local–Global.** Clusters gather token info, perform smaller all-pairs among cluster reps, then broadcast results.

Formally:

$$\begin{array}{l} \text{(A) Local swarm updates (over $T_{\text{local steps}}$):} \\ x_i^{(t+1)} = x_i^{(t)} + \gamma_i^{(t)} \cdot \left(A_{\text{local}}\left(\{x_j^{(t)}: j \in \mathcal{N}(i)\}\right) - x_i^{(t)}\right), \\ \text{[6$pt](B) Cluster Reps:} \quad r_c = \frac{1}{S}\sum_{i \in c} x_i^{(T_{\text{local}})}, \\ \text{[6$pt](C) Global Attention on r_c:} \quad r_c^{\text{new}} = A_{\text{global}}(\{r_1, \ldots, r_C\}), \\ \text{[6$pt](D) Broadcast:} \quad x_i^{(\ell+1)} = x_i^{(T_{\text{local}})} + \text{Gate}(x_i^{(T_{\text{local}})}, r_{c(i)}^{\text{new}}). \end{array}$$

After multiple layers, local information is repeatedly integrated, cluster-level context is shared, and results are broadcast back—achieving global mixing without $O(N^2)$ cost.

7 Complexity & Tradeoffs

- Local Swarm: $O(N \cdot k)$
- Cluster Formation: O(N)
- Global Attention: $O(C^2)$, with C = N/S
- Broadcast: O(N)

When $C \ll N$, $O(C^2)$ is much cheaper than $O(N^2)$. But design of neighbor sets and clustering must ensure sufficient global coverage. Clustering can cause information compression. Specialized hardware optimizations can further amplify speed gains.

8 Conclusion

SwarmFormer offers:

- Decentralized, $\mathit{swarm-like}$ local updates
- Cluster-based global attention
- A hierarchical local-global mixing mechanism

This approach scales to longer sequences without quadratic blow-up, while retaining strong performance. It opens new directions for sparser, hierarchical attention architectures in Transformers.

9 Experimental Validation

9.1 Implementation Details

Our SwarmFormer implementation uses PyTorch with the following specs:

Hyperparameter Optimization. An Optuna search over 50 trials explored:

- Embedding dim: [64, 96, 128, 160, 192]
- Layers: [2, 3, 4]
- T_{local} : [2, 3, 4, 5]
- Cluster size: [2, 4, 8, 12, 16]
- Sequence length: [64, 128, 256, 384, 512, 768]
- Batch size: [32, 48, 64, 96, 128, 160]
- Learning rates: [5e-5, 5e-4]

- Weight decay: [0.02, 0.15]
- Dropout: [0.2, 0.5]

Best configuration (89.03% accuracy) found:

Embedding dim: 192, Layers: 2, $T_{\text{local}} = 3$, Cluster size: 4, Sequence length: 768, Batch size: 48, Learning rate: 4.74×10^{-4} , Weight decay: 0.0381, Dropout: 0.40.

Model Configurations. Two variants:

Parameter	SwarmFormer-Small	SwarmFormer-Base	
Embedding dimension	128	192	
Number of layers	2	2	
Local update steps (T_{local})	3	3	
Cluster size	8 tokens	4 tokens	
Sequence length	256 tokens	768 tokens	
Batch size	96	48	
Dropout rate	0.30	0.40	
Learning rate	$4.76 imes 10^{-4}$	4.74×10^{-4}	
Weight decay	0.0541	0.0381	
Total parameters	$4,\!302,\!850$	6,749,186	

Table 1: Key hyperparameters for SwarmFormer-Small vs. SwarmFormer-Base.

Training Setup.

- Dataset: IMDB Movie Review (50k samples)
- Hardware: NVIDIA RTX 2080 Ti GPU
- Duration:
 - Small: 3.6 minutes
 - Base: 12.6 minutes
- Optimizer: AdamW
- Mixed Precision Training + Gradient Clipping (norm=1.0)

9.2 Data Augmentation Strategies

A multi-strategy augmentation pipeline [21, 22, 23, 24]:

- Sentence-Level Shuffling (maintaining local context)
- Controlled Synonym Replacement (WordNet-based)
- Hierarchical Sample Creation (combining 2-3 reviews)
- Semantic Preservation ensures no polarity drift

This yielded a 3-5% accuracy boost, crucial for robust generalization and for SwarmFormer's hierarchical architecture.

9.3 Results and Analysis

9.3.1 Testing Methodology

- Test split: 25k samples, full FP32 inference
- Batch size=256, pinned memory, GPU synchronization
- Metrics: Accuracy, Precision, Recall, F1
- Latency, throughput, memory usage measured via CUDA events

SwarmFormer-Small

- Accuracy: 86.20%
- Precision: 83.46%, Recall: 90.31%, F1=86.75%
- Inference time: 0.36s (25k samples)
- Mean batch latency: 3.67ms, throughput: 45k samples/s
- Peak memory usage: 8GB

SwarmFormer-Base

- Accuracy: 89.03%
- Precision: 87.22%, Recall: 91.46%, F1=89.29%
- Inference time: 0.47s (25k samples)
- Mean batch latency: 4.83ms, throughput: 34.8k samples/s
- Peak memory usage: 9.13GB

Figure 3: Memory scaling comparison for SwarmFormer (cluster sizes 2, 4, 8), standard Transformer, linear attention, and sparse attention. SwarmFormer significantly reduces memory usage vs. full $O(N^2)$ while maintaining strong representational capacity.

Memory Efficiency. At N = 100,000 tokens:

- Standard Transformer: 37.37GB
- SwarmFormer (C=8): 0.74GB
- SwarmFormer (C=4): 2.50GB
- SwarmFormer (C=2): 9.50GB
- Linear Attention: 0.14GB
- Sparse Attention: 0.31GB

SwarmFormer can achieve huge memory savings over full attention, though it is outperformed by linear/sparse variants if minimal memory is the only goal. However, SwarmFormer maintains superior representational power in many tasks.

Model	Params	Accuracy	Precision	Recall
SwarmFormer-Base (Ours)	$6.7 \mathrm{M}$	89.0%	0.872	0.915
SwarmFormer-Small (Ours)	4.3M	86.2%	0.835	0.903
BERT-base-cased [6]	108M	84.7%	0.827	0.869
RoBERTa-base [7]	125M	87.5%	0.962	0.775
DistilBERT [8]	$67 \mathrm{M}$	84.2%	0.915	0.746
ALBERT-base-v2 [9]	12M	86.9%	0.936	0.785

9.4 Comparative Analysis

Table 2: Comparison on IMDB test set. SwarmFormer outperforms bigger models with far fewer parameters.

Observations:

- SwarmFormer-Base (6.7M params) surpasses RoBERTa-base (125M params) in accuracy.
- ${\sim}90\%$ fewer parameters vs. standard BERT-based methods.

9.5 Ablation Studies

Local Update Steps (T_{local}) . Setting $T_{\text{local}} = 3$ or 4 yields best tradeoff. Going below 2 or above 5 harms performance vs. cost.

Cluster Size. C = 4 or 8 typically optimum. Smaller clusters (C = 2) can preserve more detail but cost more, while bigger clusters degrade fine-grained token distinctions.

Augmentation Pipeline. Gains of 3-5% from advanced data augmentation techniques.

9.6 Technical Insights

Dropout Strategy. Heavy dropout (0.4) on embeddings and moderate dropout (0.3) on attention layers provided crucial regularization [18, 19, 20].

Gradient Control. Gradient clipping at norm=1.0 prevented exploding gradients and improved stability.

Architecture Balance. Two layers, with local \leftrightarrow global interplay, was enough for strong performance. Gating mechanisms effectively merged broadcast signals.

10 Future Directions

- **Dynamic Clustering:** Learn cluster assignments on the fly for semantic grouping [10, 11].
- **Cross-Modal Applications:** Adapting SwarmFormer to vision (patchbased), speech, or multi-modal tasks.
- Ultra-Long Context: Scale to million-token contexts with hierarchical compression.
- Hardware Optimizations: Mixed precision, quantization, or custom kernels for local-swarm steps.

References

- [1] Vaswani, A., et al. (2017). Attention is all you need. In NeurIPS 30.
- [2] Child, R., Gray, S., Radford, A., & Sutskever, I. (2019). Generating long sequences with sparse transformers. arXiv:1904.10509.
- [3] Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The longdocument transformer. arXiv:2004.05150.
- [4] Zaheer, M., et al. (2020). Big Bird: Transformers for longer sequences. NeurIPS 33.
- [5] Liu, Y., & Lapata, M. (2019). Hierarchical transformers for multi-document summarization. arXiv:1905.13164.
- [6] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pretraining of deep bidirectional transformers for language understanding. NAACL 2019.
- [7] Liu, Y., et al. (2019). RoBERTa: A robustly optimized bert pretraining approach. arXiv:1907.11692.
- [8] Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). Distil-BERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv:1910.01108.
- [9] Lan, Z., et al. (2019). ALBERT: A lite BERT for self-supervised learning of language representations. arXiv:1909.11942.
- [10] Zhang, Y., et al. (2024). TCFormer: Token Clustering Transformer for Semantic Segmentation. arXiv:2407.11321.
- [11] Wang, X., et al. (2024). Hierarchical Document Transformer with Auxiliary Semantic Signals. arXiv:2407.08330.

- [12] Guo, Y., Zhang, L., & Liu, Y. (2024). Collective intelligence as a unifying concept. Communications Biology 7.
- [13] Chen, H., Wang, R., & Li, J. (2024). ACO-RNN: Combining Ant Colony Optimization with Recurrent Neural Networks. HAL Open Science.
- [14] Couzin-Fuchs, E., et al. (2024). Collective behavior enhances environmental learning in animal groups. Nature Communications 15(1).
- [15] Tadmor, E., et al. (2024). Emergent Behavior in Collective Dynamics: From Individual Interactions to Group-Level Phenomena. PRSB 289(1974).
- [16] Berman, S., et al. (2024). Scale-free emergent properties in collective systems near critical points. Sci. Reports 14(1).
- [17] Chan, N., & Gershenson, C. (2024). Neural Cellular Automata. ISAL Proceedings 36, 96–104.
- [18] Zhang, K., & Liu, Y. (2024). Dynamic Dropout: Adaptive Regularization for Transformer Training. arXiv:2411.03236.
- [19] Chen, H., et al. (2024). Layer-wise Regularized Dropout for Transformerbased Language Models. LREC 2024.
- [20] Wang, R., & Li, J. (2024). Sparse Mixture of Experts as an Alternative to Dropout. OpenReview.
- [21] Li, X., et al. (2024). Hierarchical Contextual Augmentation for Multi-Document QA. arXiv:2402.01767.
- [22] Zhang, Y., & Wang, J. (2024). Multi-Grained Contrastive Learning for Short Text Classification. arXiv:2501.09214.
- [23] Chen, H., et al. (2024). Label Augmentation for Zero-Shot Hierarchical Text Classification. ACL 2024.
- [24] Wei, J., & Zou, K. (2019). EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks. EMNLP-IJCNLP.